Energy and Ecosystems - Questions by Topic Q1. Farmers find it helpful to know the productivity of their land. The diagram below shows the relationship between GPP (gross primary productivity), NPP (net primary productivity) and R (plant respiration) for an area of grassland. - (a) The efficiency of the transfer of energy from GPP to NPP for this grassland is 45%. - (i) Calculate the values for NPP and R. Write your answers in the diagram above. (ii) Using the information given, explain the relationship between GPP and NPP. (3) (2) | (b) Suggest why NPP values would be of use to a farmer who wanted to use this land for cattle. | | |--|---| | (3) |) | (c) The units (kJ m $^{-2}$ year $^{-1}$) used in the diagram show a rate of energy production. Suggest wh this is more useful than measurements of biomass in the grassland on a particular day. |) | | (2) |) | | | | | | | | | | | | | | (Total for Question = 10 marks) |) | The graph below shows how the depth of water in a freshwater lake affects the net primary productivity (NPP). Place a cross \boxtimes in the box next to the units that should appear on the *y*-axis of this graph. **(1)** - A kg - B kJ m⁻1 - \square **C** kJ m⁻² year⁻¹ - \square **D** kg m⁻¹ year⁻¹ Q3. The Sylt-Rømø Wadden Sea, shown in the diagram below, has a high gross primary productivity (GPP) which is monitored constantly. The Sylt-Rømø Wadden Sea is protected from the North Sea by an island. There are no large rivers flowing into the Sylt-Rømø Wadden Sea. | (a) Explain the meaning of the term gross primary productivity (GPP) . | | |--|------| | | (2) | | | | | | | | (b) Seagrass, microphytobenthos and phytoplankton are the producers found in the Sylt-F
Wadden Sea. | lømø | | The chart below shows the distribution of GPP between these producers. | | | Microphytobenthos Phytoplankton | | | (i) Using the chart, describe the distribution of GPP in this sea. | (0) | | | (2) | | | | | | | | | | | | | | (ii) The total GPP for this sea is 840 \times 10 ⁶ kJ m ⁻² y ⁻¹ . | | | Explain how GPP for the phytoplankton could be calculated. | | | | (2) | | | | | | | | | | | | | | iii) Suggest why GPP for this sea is very high. | | | | (2) | | | | | (c) | Explain why net primary productivity (NPP) is lower than GPP. | | |---|---|-----| | | | (2) | | | | | | | | | | •••• | | | | | | | | • | | | (Total for Question = 10 marks) Q4. The photograph shows heather, Calluna vulgaris, a plant that grows on moorland. © C016/7131/Science Photo Library In an investigation into the net primary productivity of heather, all the vegetation on an area of two different moorlands, A and B, was removed by burning. The dry biomass, in g m^{-2} , was then measured each year for a period of 20 years. | | on that shows the re
ty and respiration. | elationship betv | veen gross p | rimary product | | |-------------------------------------|---|--|---------------|---|---------------| | | | | | | (| | | | | | | | | | | | | | | | (b) The graph sho
year period. | ws the change in the | e mean dry bior | nass of the h | neather plants | during the 20 | | 1000 - | 750 - | | | | | | | | | | | / | | | mg /s | | | | | .,,,,,,, | | Mean dry biomass / gm ⁻² | | | | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | | | dry bi | | | | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | | | Mean | | | | | | | | | / | | | | | 250 - | / ,. | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | | | | | | <i></i> | | | | | | | | | | | | | 0 | 5 | 10 | | 15 | 20 | | | | Time since bur | ning / years | | | | | moorland A | | | | | | | moorland B | | | | | | (i) Describe a met
in year 20. | hod that could be us | sed to obtain th | e mean dry l | piomass of the | heather plan | | year 20. | | | | | (| | | | | | | (| | | | | | | | | | | | | | | (ii) The total solar radiation reaching moorland A was 3 144 000 kJ $\rm m^{-2}~\rm yr^{-1}$. Each gram of dry heather contains 22.186 kJ. Calculate the percentage efficiency of heather plants from moorland ${\bf A}$ at converting solar radiation into dry biomass. (2) |
 | |------| | | (iii) After the burning of the moorland, a process of succession occurred. The following information shows some of the changes found over the 20 years. Analyse the data to explain the changes shown. | (3) | |-----| | | | | | | | | | | | | (Total for question = 8 marks)